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Abstract of the Thesis 

Synchrotron X-ray Data Processing and Visualization Techniques  

for Analysis of Functional Materials 

by 

Charles Clark 

Master of Science 

in 

Materials Science and Engineering 

Stony Brook University 

2023 

 

The objective of this thesis work is to demonstrate the application of both standard and specialized 

data science and visualization tools to synchrotron X-ray data analysis. Each chapter highlights an 

application of such tools to a different study of functional materials, including: in-situ X-ray 

absorption spectroscopy (XAS) of phase evolution at an MnO2 electrode during battery cycling, a 

kinetic study of molten salt dealloying (MSD) using 3D X-ray nanotomography, and grazing-

incidence wide angle X-ray scattering (GIWAXS) analysis of phase evolution during solid-state 

interfacial dealloying (SSID) in a Ti-Cu/Mg alloy system. In each case core Python data science 

packages such as NumPy, Matplotlib, and Pandas were used to efficiently carry out routine data 

analysis tasks such as data organization and visualization. Subsequently, a range of more advanced 

tools were employed, ranging from more specialized Python packages such as SciPy, PeakUtils, 

or pyMCR, to entire analysis applications like Avizo for 3D data analysis, or Materials Project’s 

XAS database.  
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Overall, the wide range of tools available, coupled with the effectiveness of data science packages, 

highlights the increasing critical need for researchers in synchrotron science to possess a solid 

understanding of data science tools. This need is further amplified by the substantial percentage of 

multimodal experiments conducted at synchrotron facilities, including but not limited to 

Brookhaven National Laboratory’s National Synchrotron Light Source II (NSLS-II) where the 

experiments detailed in this thesis took place. As synchrotron science continues to generate 

increasingly complex, multidimensional datasets, the need for efficient data processing and 

visualization tools becomes even more crucial. Additionally, continued efforts to better integrate 

these tools with experimental beamlines will be crucial for enabling researchers to seamlessly 

handle and analyze complex datasets. 
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Chapter 1. Multivariate Curve Resolution Applied to X-ray Absorption Spectroscopy 

 

1.1 Introduction 

1.1.1 XAS Datasets 

X-ray absorption spectroscopy (XAS) is a powerful technique for analyzing chemical state and 

local structure of a wide range of materials in different applications [1-3]. During an XAS 

experiment the absorption coefficient µ(E) of a sample is measured as a function of an incident X-

ray beam energy around a target elemental energy edge (usually denoted E0). The acquired 

spectrum is based on the electronic and structural state of the selected element in the sample for 

elemental and chemical sensitive analysis. XAS experiments produce complex datasets as each 

spectrum typically consists of several hundred data points, and an entire series of spectra can be 

collected that evolve as a function of parameters such as time, space, chemical composition, etc. 

Researchers are generally interested in the changes in spectra due to variations in the experimental 

parameter under study, therefore it is also helpful to regard each spectrum as a single 

multiparameter data point within the broader scope of experimental analysis.   

Before any analysis can be done on a set of XAS spectra they must be normalized to remove the 

effects of measurement conditions on the data, such as sample preparation, sample thickness, 

detector settings, etc. The normalization procedure shifts and scales an XAS spectrum such that 

 
 Part of the chapter related to battery analysis is based on a manuscript published in Energy & 
Environmental Science: Varun R. Kankanallu, Xiaoyin Zheng, Denis Leschev, Nicole Zmich, Charles 
Clark, Cheng-Hung Lin, Hui Zhong, Sanjit Ghose, Andrew M. Kiss, Dmytro Nykypanchuk, Eli Stavitski, 
Esther S. Takeuchi, Amy C. Marschilok, Kenneth J. Takeuchi, Jianming Bai, Mingyuan Ge and Yu-chen 
Karen Chen-Wiegart, Elucidating a dissolution–deposition reaction mechanism by multimodal synchrotron 
X-ray characterization in aqueous Zn/MnO2 batteries. Energy & Environmental Science, 2023. 
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the pre-edge region of the normalized spectrum is at µ = 0, and the characteristic post-edge features 

oscillate around the value µ = 1 [4].  

Since XAS requires an X-ray source with finely tunable incident energy and high photon flux to 

achieve sufficient data quality, the technique is most often performed at synchrotron radiation 

facilities [2]. Although laboratory based methods are core to the history of XAS, and in recent 

years have attracted significant interest [5]. In the case that multiple chemical states of the selected 

element are present in the sample then each chemical state may be treated as a “pure” component, 

and as a consequence of Beer’s Law, the total acquired spectrum is equal to a linear combination 

of the “pure” component spectra weighted by each component’s relative concentration in the 

sample [2], i.e.: 

𝜇(𝐸) =  ෍ 𝑐௜𝑠௜ +  𝜀

ே

௜ୀଵ

 (1.1) 

In this equation N represents the number of pure components in the sample, ci and si are the 

respective concentration and spectrum of the ith pure component, and ɛ represents experimental 

noise in the measurement.  

From here equation (1.1) can be extended to consider an entire XAS dataset (e.g., from a time or 

space resolved experiment) as the multiplication of a concentration matrix C with a spectral matrix 

S: 

𝐷 = 𝐶𝑆் +  𝜀 (1.2) 

Here D represents a dataset composed of m measurements each with n energy points, thus having 

dimensions dim(D) = (m × n). The rows of C represent the concentrations of each N pure 
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component across the m measurements, thus dim(C) = (m × N), and the rows of S are the reference 

spectra of the N pure components, thus dim(S) = (n × N). Here, ɛ has been extended to a data matrix 

with dim(ɛ) = (m × n) which still represents experimental noise in the dataset. Figure 1.1 shows a 

schematic of the matrix multiplication for further illustration. Now that the XAS dataset is 

expressed in a matrix form the tools of linear algebra can be applied for a more rigorous 

mathematical analysis of experimental results.  

 

Figure 1.1 Schematic of equation (1.2) to express XAS dataset (D) as matrix multiplication of a 
concentration matrix (C) and matrix of pure component spectra (S) plus a residual error matrix (ɛ). 

 

1.1.2 Multivariate Curve Resolution – Alternating Least Squares (MCR-ALS) 

Generally, the goal of any XAS data analysis is to determine the pure components in a sample and 

their respective concentrations from an experimental dataset. In terms of equation (1.2) this means 

determining the concentration profile matrix C and pure component spectra matrix S, for a given 

dataset matrix D. In some cases, the spectra of the pure components making up a sample are 

 
 Note that several different but equivalent notations exist in the literature for expression of spectral 
datasets in matrix form. Here the notation from [6] is adopted. See references [2, 7] for example uses of 
other notations and further details.  
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already known (i.e., the S matrix is already determined) based on prior knowledge of the chemical 

reactions or sample fabrication processes, and only the concentration profiles need to be fitted to 

the experimental data. A very common choice for XAS analysis in such a situation is linear 

combination fitting (LCF). LCF essentially applies least squared fitting to fit concentration profiles 

to the XAS dataset based on the provided pure component spectra.  

Multivariate curve resolution (MCR) refers to a suite of techniques used to decompose spectral 

datasets when neither the pure component spectra nor concentration profiles are known. 

Alternating least squares (ALS) is becoming a popular MCR method due to its relative simplicity 

in implementation as well as robustness [2]. MCR-ALS starts with an initial guess of the 

concentration profiles or pure component spectra, and then iteratively applies least squares 

regression to first fit whichever matrix was not provided (e.g., fitting C1 if an initial guess S0 was 

given), then uses the result of this fitting to re-fit the matrix for which an initial guess was provided 

(e.g., using C1 to fit a new estimation of the pure component spectra S1). This alternating fitting 

process is repeated until a breaking condition is met. The breaking condition may be the 

convergence or divergence of the fitting based on the change to a defined lack-of-fit (LOF) 

parameter, or simply that a user-defined maximum number of iterations has been reached. Figure 

1.2 shows a schematic representation of the MCR-ALS fitting algorithm.  
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Figure 1.2 Flowchart diagram of typical MCR-ALS algorithm. Note that a more positive  
indicates a better fitting result, while a more negative  indicates a worse fitting result.  

 

Several constraints may also be applied during the ALS fitting to ensure physical validity of the 

fitted results [2]. For instance, a sum-to-one (also sometimes called normalization) constraint is 

usually applied to the concentration profiles to ensure mass balance is satisfied (i.e., ∑ 𝑐௜ = 1ே
௜ୀଵ  

for all m measurements). Likewise, non-negativity constraints are usually applied to both the 

concentration profiles and pure component spectra since there is no valid physical interpretation 

of a negative concentration or negative absorption coefficient.  
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In an ideal case MCR-ALS would reveal the exact chemical composition of a selected element in 

a sample throughout an experiment. However, in practice many factors impact the result of any 

MCR-ALS fitting including data quality, normalization of spectra, and perhaps most importantly 

the initial guess of spectra or concentration profiles provided. Therefore, any MCR-ALS analysis 

requires careful consideration of several parameters and an informed interpretation of the resulting 

fit.  

Another important consideration in the analysis of MCR-ALS fitting results is the so-called 

rotational ambiguity. Rotational ambiguity refers to the fact that the solution produced by an MCR-

ALS fitting routine is in general not unique and exists within a space of feasible solutions that 

satisfy the convergence criteria. Applying constraints to the MCR-ALS fitting process, such as the 

aforementioned sum-to-one and non-negativity constraints, help to reduce rotational ambiguity by 

restricting the size of the unique solution space. The best way to estimate the degree of uncertainty 

due to rotational ambiguity is still being investigated, however software such as MCR-Bands is 

openly available which implements one approach for quantitatively estimating the degree of 

rotational ambiguity [8].  

 

1.1.3 Generating an Initial Guess 

The first step in applying MCR to an experimental dataset is an estimation of the number of pure 

components present in the data. Mathematically this corresponds to an estimation of the rank of 

the dataset matrix D.  This estimation can be achieved via principal component analysis (PCA) of 

the dataset, which is often performed through singular value decomposition (SVD) of the D matrix. 

SVD decomposes D into the following form: 
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𝐷 = 𝑈𝛴𝑉் (1.3) 

In this form U is an (m × m) and V is an (n × n) matrix, each with columns that can be respectively 

thought of as the eigen-concentration profiles and eigen-spectra composing the D dataset. The 

columns of V may also be referred to as the “principal components” of D. Σ is then an (m × n) 

diagonal rectangular matrix whose elements are the singular values of D. The singular values are 

arranged in descending order along the diagonal of Σ, and in essence rank the importance of the 

columns of U and V in describing the dataset. In actuality the columns of U and V have no physical 

interpretation, but instead if the first r columns of U and V are considered with the first r rows of 

Σ, then their multiplication in the form of equation (1.3) is the best least-squares approximation of 

D using r components [7]. Thus, based on the SVD of D a critical value for r can be determined 

for which the key features of the dataset are described without describing the experimental noise. 

This critical value represents the number of pure components found in the dataset and there are 

several quantitative methods for its determination [2].  

Once the number of pure components has been determined there are several ways to generate an 

initial guess for the pure component spectra (S0) or concentration profiles (C0). More advanced 

mathematical techniques include evolving factor analysis (EFA) or the simple-to-use interactive 

self-modelling mixture analysis (SIMPLISMA) algorithms [2]. However, a simpler approach of 

choosing the correct number of reference spectra measured on material standards can also be 

utilized to create an initial guess for S0. 
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1.2 Implementation and Example Application 

1.2.1 MCR-ALS Implementation in Python 

XView is a python-based XAS data analysis software package developed by Eli Stavitski and 

Denis Leshchev of NSLS-II’s Inner Shell Spectroscopy (ISS, 8-ID) beamline [9]. XView makes 

use of the pyMCR package developed by NIST which implements alternating regression scheme 

MCR algorithms in python, including MCR-ALS [6]. The pyMCR package allows users to 

perform MCR fitting by first creating a specially defined class which includes the regression 

algorithm to be used and any fitting constraints, then a simple function call can fit an initial guess 

of either pure component spectra or concentration profiles to a dataset. Constraints that can be used 

include the aforementioned sum-to-one and non-negativity constraints, as well as fixing any 

elements of the initial guess so that they are not varied during the fitting process, among others. 

Fitted results are returned as easily accessible NumPy arrays. pyMCR currently uses the mean-

squared error (MSE) as its LOF parameter, which is calculated via the following: 

𝑀𝑆𝐸 =  
∑ ∑ ൫𝐷௜,௝ − 𝐷௜,௝

௖௔௟௖൯
ଶ௡

௝ୀଵ
௠
௜ୀଵ

𝑚 × 𝑛
 (1.4) 

While XView remains as a software under constant development, a great amount of functionality 

has been developed on top of the pyMCR package. For example, within XView users can perform 

SVD and PCA on a dataset to determine the number of pure components, something which is not 

implemented in pyMCR. XView also implements a graphical user interface (GUI) which allows 

for more user-friendly creation of datasets, initial guesses, and fitting parameters. Results of any 

MCR projects in XView are then stored as json files that can be accessed later for further analysis 

and manipulation.  
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1.2.2 Application to Battery Materials  

 

Using XView, MCR-ALS was applied to an in-situ experimental dataset studying the material 

phase evolution at an MnO2 electrode in (2M ZnSO4 + 0.1M MnSO4) electrolyte during battery 

cycling. From scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray 

nanotomography analysis it was clear that new Zn-Mn complex phases were forming in the 

electrodes as they undergo cycling; however, the exact chemical nature of these phases was 

uncertain. Thus, MCR analysis, combined with SVD/PCA, was applied to the X-ray absorption 

near edge structure (XANES) region of XAS data around the Mn K-edge to gain better insight into 

the number of phases formed during the experiment and the chemistry of these phases.  

Figure 1.4 shows plots from the SVD/PCA conducted in XView. From this analysis it was 

concluded that there were likely three, though possibly four, pure component phases present in the 

data. This conclusion was based on several aspects of the SVD/PCA.  First, as seen in Figure 1.4a 

the fourth principal component (PC) is less smooth than the first three, implying that this 

component begins to describe the experimental noise in the dataset rather than important spectral 

features [7]. Second, in Figure 1.4b the scree plot, which essentially plots the importance of each 

PC by its singular value and chi-square value [2], begins to level off around four PC’s. Finally, the 

autocorrelation of the fourth eigen-concentration profile is significantly lower than the first three. 

Autocorrelation is a measurement of the degree to which changes in a value are correlated with 

previous changes. This is a valuable metric for XAS PCA since no drastic changes are expected in 

any spectral features from one measurement to another. Therefore, a low autocorrelation for the 

concentration profile of a XAS PC can indicate that the PC is mostly describing noise in the dataset.  
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Figure 1.3 Mn K-edge XAS dataset from in-situ MnO2 electrode experiment loaded into XView 
and cropped to XANES region. 
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Figure 1.4 SVD/PCA of MnO2 electrode in-situ experimental dataset: (a) plot of first four eigen-
spectra/PC’s, (b) scree plot for varying number of PC’s, (c) first four eigen-concentration profiles, 
and (d) autocorrelation for eigen-spectra (black) and eigen-concentration profiles (red).  

 

Based on the PCA of the dataset several potential MCR models were created and tested for the 

experimental data. The MCR models used included reference spectra from MnO2 and MnSO4 

standards, as well as reference spectra from a Zn-Mn complex electrodeposited on carbon black, 

and spectra acquired on MnO2 electrodes that had been further cycled for ex-situ experiments (see 
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Table 1.1). For each model we applied the standard non-negativity and sum-to-one constraints, 

and then selected a combination of reference spectra that had been measured on material standards 

for initial guesses. The fitting results for each model were then plotted and evaluated based on how 

well the fit compared to the real dataset as well as the physical validity of the refined spectra and 

concentration profiles.  

Table 1.1 MCR models tested on MnO2 in-situ experimental dataset. ED1 represents a spectrum 
acquired on Zn-Mn complex electrodeposited on carbon black believed to resemble a Zn-Mn 
complex formed during battery cycling. 8C, 16C, and 32C Charge indicate spectra acquired on 
further cycled MnO2 electrodes during ex-situ experiments.  

Model # MnO2 MnSO4 ED1 8C Charge 16C Charge 32C Charge 

1 Fix Fix Vary 
   

2 Fix Fix 
 

Vary 
  

3 Fix Fix 
  

Vary 
 

4 Fix Fix 
   

Vary 

5 Fix Vary Vary 
   

6 Fix Vary 
 

Vary 
  

7 Fix Vary 
  

Vary 
 

8 Fix Vary 
   

Vary 

9 Fix 
 

Vary Vary 
  

10 Fix 
 

Vary 
 

Vary 
 

11 Fix 
 

Vary 
  

Vary 

12 Vary 
    

Vary 

13 Vary 
   

Vary 
 

14 Vary 
 

Vary 
  

Fix 

15 Vary Vary Vary 
  

Vary 

16 Fix Fix Vary 
  

Fix 

 

Based on these criteria Model 10, shown in Figure 1.5 was determined to give the best result. This 

model’s initial guess consisted of a reference MnO2 spectrum which was fixed during the fitting 

process, as well as two other references which were believed to be close to the Zn-Mn complex 

phases that form during the battery cycling and were allowed to vary. Fixing the MnO2 spectrum 

also helps to reduce the rotational ambiguity for the fitting results of this model since it effectively 
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adds another constraint to the fitting process. The fitted concentration profiles show the relative 

concentration of MnO2 gradually decreases throughout the experiment, as expected, while one of 

the potential Zn-Mn complexes gradually increases. The spectrum for this gradually increasing 

phase has also been qualitatively noted to be rather similar to a calculated ZnMn2O4 XAS spectrum 

from The Materials Project [10-12]. Moreover, sharp short-term increases and decreases in MnO2 

concentration correspond to the battery cycling between discharge and charge, as indicated by blue 

and red dashed lines on the fitted concentration profile plot. The other potential Zn-Mn complex 

also fluctuates with the battery discharge and charge, which could indicate a reversibly forming 

complex phase. However, this phase’s relative concentration stays roughly constant throughout 

the experiment, including the very start before any Zn-Mn complexes are expected to have formed. 

Therefore, further refinement of the model will likely be needed to understand exactly what this 

fitted spectrum represents physically.  
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Figure 1.5 MCR-ALS model applied to MnO2 electrode experiment dataset determined best based 
on quality of fit as well as physical interpretation of results: (a) experimental dataset (black) 
compared to MCR fit results (red), (b) spectra guess consisting of MnO2 reference spectrum 
(orange) and two other references believed to resemble Zn-Mn complexes formed during the 
experiment (blue, green), (c) refined spectra after fitting (solid) compared to initial spectra guesses 
(dashed), note that MnO2 reference was fixed to not vary during fitting, and  (d) corresponding 
fitted concentration profiles with dashed vertical lines indicating battery cycling between discharge 
(cyan) and charge (red).  

 

1.2.3 Future Work 

While the selected model applied to the MnO2 experimental data shows promising results, further 

analysis and model refinement will be needed to fully describe the XAS data. To start, the 

remaining refined reference spectrum (blue in Figure 1.5) requires further comparison to known 

XANES spectra to determine the chemistry it represents. Our initial hypothesis was that the 
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spectrum could represent a combination of a formed Zn-Mn complex phase and signal from the 

electrolyte solution based on qualitatively analysis of the spectrum’s core features. However, so 

far attempts to resolve in the spectrum in such a way (e.g., Models 15 and 16 in Table 1.1) have 

been unsuccessful. Thus, further testing and analysis is required. For instance, XANES modeling 

on the MCR results obtained may provide a significantly different physical interpretation of the 

currently undetermined spectrum. Moreover, MCR modeling can also be performed on the Zn K-

edge data from the same in-situ experiment. This would be very valuable because any Zn-Mn 

complex phases should be represented in the refined spectra of the MCR results for both datasets, 

allowing for cross-validation of these phases. Furthermore, as XView is continuously developed 

new features such as EFA or SIMPLISMA algorithms may be implemented which would provide 

new methods for generating initial MCR guesses that could provide unique perspectives on the 

dataset. In addition, implementing algorithms such as MCR-Bands would allow future analysis to 

better estimate rotational ambiguity in any fitted results. Finally, further application of MCR to 

other types of datasets and systems will help to develop our understanding of the technique 

including its capabilities and limitations.  
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Chapter 2. Multi-dimensional Data Visualization  

and Quantification Techniques Applied to Nanotomography Datasets 

 

2.1 Introduction 

Molten salt dealloying (MSD) is a promising technique for fabrication of micro/nanoporous 

metallic materials, which have a wide range of potential applications due to their high specific 

surface area, low density, and other desirable properties [13, 14]. Studying MSD was originally 

motivated by the salt-induced corrosion of engineering materials in the design of next generation 

nuclear and solar power plants [15-18]. Thus, by understanding the kinetic evolution of alloy 

materials during the MSD process, both the fabrication of micro/nanoporous materials and 

prevention of corrosion attacks in future concentrated solar and nuclear power plant designs can 

be advanced. Synchrotron X-ray nano-tomography is a powerful way to study the three-

dimensional (3D) morphological and chemical evolution of materials during processes such as 

MSD due to the high spatial resolution and fast data acquisition times which allow for high quality 

real-time observations of the dealloying process during in-situ experiments. For instance, the Full 

Field X-ray Imaging beamline of NSLS-II is capable of acquiring a full 3D tomography scan in 

one minute with 30 nm resolution [19]. Such experiments generate very large multi-dimensional 

datasets. Therefore, there is a need to apply advanced data visualization and quantification 

techniques to such datasets to understand the kinetics of MSD.  

 
 Part of the chapter is based on a manuscript in preparation: Xiaoyang Liu, Kaustubh K. Bawane, Charles 
Clark, Michael E. Woods, Phillip Halstenberg, Xianghui Xiao, Wah-Keat Lee, Lu Ma, Steven Ehrlich, 
Sheng Dai, Katsuyo Thornton, Mingyuan Ge, Ruchi Gakhar, Lingfeng He, Yu-chen Karen Chen-Wiegart 
Elucidating the Transition of 3D Morphological Evolution of Binary Alloys in Molten Salts with Metal Ion 
Additives.  
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2.2 Three-dimensional Data Visualization 

Two in-situ tomography experimental datasets were acquired at the Full Field X-ray Imaging (FXI, 

18-ID) beamline of NSLS-II to observe MSD of Ni-20Cr alloy micro-wire in KCl-MgCl2 molten 

salt mixtures with 1 wt.% EuCl3 additive. For the first experiment a 50-50 molar ratio of KCl-

MgCl2 was used, while the second experiment used a eutectic (68-32 molar ratio) mixture of KCl-

MgCl2. In both cases the samples were heated to 700 °C for the duration of the experiment. The 

details of the sample preparation and experimental procedure for the in situ synchrotron X-ray 

nano-tomography studies can be found in prior publications [13, 20].  

Commercial data visualization and analysis software Avizo (Thermo Fisher Scientific, v. 9.3.0) 

was used to create 2D pseudo cross-sectional views and 3D volume renderings of the experimental 

datasets to observe pore formation and evolution during the MSD process. Within Avizo selected 

scans from the datasets were first cropped to smaller regions of interest near the edge of the Ni-

20Cr wire to better observe pore evolution. Then a 3D median filter was applied to the data with a 

range of 18 pixels to reduce noise for better visualization. Distinct colormaps were also applied to 

the 3D volume renderings of each dataset to better aid visualization. The final data visualizations 

were placed in time series, as shown in Figure 2.1, to display pore evolution over time and 

differences in pore growth for the two salt mixtures.  
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Figure 2.1 Data visualization of pore evolution in Ni-20Cr microwire during MSD in KCl-MgCl2 
molten salt mixture with 1 wt. % EuCl3 additive. Regions of interest used for 3D volume rendering 
are indicated with red boxes on 2D pseudo cross-sections. (a) Dealloying in 50-50 molar ratio KCl-
MgCl2 mixture. (b) Dealloying in eutectic KCl-MgCl2 mixture.  

 

2.3 Image Segmentation and Morphological Quantification 

To perform quantitative analysis on the in-situ datasets, the data was first cropped to remove 

unnecessary background and overly noisy data measured far from the center of the images with 
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very low signal-to-noise ratio due to low photon counts. Image cross correlation was then used to 

align the whole tomography time series via volume registration on the cropped data. Python code 

developed in-house at the FXI beamline of NSLS-II was used to perform the cross correlation via 

fast Fourier transforms of the 3D volumes [21]. Segmentation was then performed on the 3D 

images to distinguish between the alloy material, and the rest of the image (i.e., molten salt mixture 

and pores within the micro-wire). For the 50-50 KCl-MgCl2 dataset a 3D Gaussian filter with 

standard deviation equal to 3 pixels was applied before doing segmentation to suppress noise. For 

this dataset segmentation was done by first determining a threshold from the X-ray attenuation 

histogram of the middle slice of each 3D image. The histograms were primarily bimodal, so the 

threshold can be determined automatically. The thresholding was conducted through an in-house 

Python script which utilizes SciPy’s find_peaks function on the negative of the image histogram 

(i.e., the image histogram mirrored over the x-axis). The largest peak on the negative histogram 

corresponds to the deepest valley on the original histogram, which separates the two modes of the 

distribution. Therefore, the value at the largest negative peak can be used for the image threshold. 

For each image, pixels with X-ray attenuations above the threshold were marked as alloy material, 

while those with attenuations below the threshold were marked as the molten salt mixture or pores 

(see Figure 2.2(a)).  

A similar process was applied to perform segmentation on the eutectic KCl-MgCl2 dataset. First a 

3D Gaussian filter with standard deviation equal to 2 pixels was applied. The filter size was 

reduced due to smaller features being removed by a larger filter size. Again, the attenuation 

histogram of the middle slice of each 3D image was used for thresholding. However, due to 

increased complexity of the histograms the threshold_minimum function from scikit-image 

package in Python was used to determine the threshold for each image, rather than the previously 
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used in-house method (see Figure 2.2(b)). This function returns a threshold based on the minimum 

method, which continually smooths the histogram until there are only two maxima, at which point 

the minimum between them is determined to be the threshold [22].   

 

 

Figure 2.2 Demonstration of segmentation process on example scans from MSD of Ni-20Cr 
microwires: (a) in 50-50 molar ratio KCl-MgCl2 and (b) in eutectic KCl-MgCl2 mixture. (i) a 
middle pseudo cross-section image of scan after cropping and alignment, (ii) the middle pseudo 
cross-section image after applying 3D Gaussian filtering, (iii) filtered image histograms with 
threshold values marked in red, (iv) final binarized image after segmentation. Note the increased 
complexity in the histogram for (b) compared to (a). 

 

With the segmentation process, the datasets were converted into series of binary images for 

quantitative analysis. Volume loss was calculated by counting the number of pixels marked as the 

Ni-20Cr alloy material for each image and normalizing by the initial amount of alloy material in 

each dataset. This gave the fraction of initial volume remaining as a percentage for each scan. It is 
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important to note that artifacts in the image segmentation occasionally resulted in the volume loss 

analysis showing greater than 100% of the starting material for some scans.  

To perform porosity calculations further data processing was required. Specifically, a mask around 

the sample needed to be created so that the pores inside the sample could be distinguished from 

the molten salt mixture outside the sample. To create such a mask the convex hull of the 2D images 

in each binarized 3D image stack was computed using the convexHull function in OpenCV [23]. 

Since the samples resemble a mostly convex, almost circular shape in the 2D cross-sections, the 

convex hull provided a good approximation of the sample edges. Therefore, the non-material 

pixels inside the convex hull mask could be marked as pores while those outside the convex hull 

mask could be marked as the molten salt mixture. Now each scan is a ternary image consisting of 

three distinct phases: pixels marked as the alloy material, the pores in the micro-wire, and the outer 

molten salt mixture as shown in Figure 2.3. The porosity of each scan was then calculated by 

taking the fraction of pixels within the convex hull mask that are marked as pores.  

 

Figure 2.3 Convex hull masking applied to example scans from 50-50 molar ratio KCl-MgCl2 (a) 
and eutectic KCl-MgCl2 (b) datasets. Pixels marked as molten salt mixture are black, while those 
marked pores are grey, and those marked as alloy material are white.  



 

22 
 

2.4 Results and Discussion on Volume Loss and Porosity Evolution 

The final calculated volume losses and porosity measurements were plotted across the 

experimental duration for both datasets, as seen in Figure 2.4. Overall, the reaction kinetics for the 

eutectic mixture was much faster than that of the 50-50 molar ratio KCl-MgCl2. Volume loss 

occurred more quickly during MSD in eutectic KCl-MgCl2 and the final percentage of volume 

remaining was also lower (~90% compared to ~94%). In each experiment an initial rapid increase 

of porosity was observed, but porosity growth slowed as dealloying continued. However, in the 

eutectic KCl-MgCl2 mixture the initial porosity growth was much more rapid, the porosity leveled 

off much faster, and the final porosity was higher relative to dealloying in the 50-50 KCl-MgCl2 

(~27% compared to ~22%).  

Since grain boundaries serve as a shortcut for reactions and diffusion, the differences in 

morphological evolution could be explained by competition along grain boundaries between 

surface diffusion of the more noble element (Ni) and dissolution of the less noble element (Cr) 

[16]. For instance, if the surface diffusion of Ni occurs much faster than Cr dissolution, then Ni 

atoms could aggregate and passivate the surface of the grains, significantly slowing volume loss 

and pore growth. Inversely, if Cr dissolution occurs faster than Ni surface diffusion, significantly 

faster reactions may occur. With this understanding it is possible that the different composition 

KCl-MgCl2 molten salt mixtures caused changes in the relative kinetics of the Ni surface diffusion 

and the Cr dissolution along grain boundaries. In either case these experiments directly show that 

the composition of molten salt can on its own affect the MSD corrosion process. Future work may 

establish a more quantitative relationship between the ratio of KCl to MgCl2 in molten salt and 

corrosion of Ni-Cr alloys.  
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Figure 2.4 Comparison of volume loss (a) and porosity growth (b) for MSD in the 50-50 molar 
ratio KCl-MgCl2 (red) and eutectic KCl-MgCl2 (black). Note that artifacts in the segmentation 
process produced some volumes above 100% for the 50-50 dataset.  
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Chapter 3. Multiparameter Analysis of GIWAXS Data  

for Thin-Film Solid State Interfacial Dealloying 

 

3.1 Introduction 

Thin-film solid state interfacial dealloying (SSID), also called thin film solid state metal dealloying 

(SSMD), is another emerging technique for fabrication of nanoporous materials. Specifically, 

SSID is a subset of metal-agent dealloying. During metal-agent dealloying a metal is used as a 

solvent to selectively dissolve one or more components from an alloy, causing the remaining 

components to self-reorganize into a metal-metal nanocomposite or nanoporous structure. 

Applying SSID to a thin film geometry has been recently demonstrated, and makes use of shorter 

dealloying times to fabricate finer features than dealloying bulk materials, as well as opening the 

possibility to combine SSID with various substrates for functional applications [24].  However, 

the material design criteria including the underlying thermodynamics and kinetics processes for 

thin film SSID systems are not yet fully understood. Traditionally the mixing enthalpies of the 

metal solvent with the elements in the starting alloy would be compared to determine the 

thermodynamic favorability of dealloying, but this has been shown to be insufficient in describing 

SSID systems [25]. Thus, there is a need to explore the multiparameter space which characterizes 

a SSID system in order to first understand the evolution and kinetics of that particular system, then 

apply this understanding in guiding exploration of future systems. 

 
 Part of the chapter is based on data associated with a manuscript published in Acta Materialia: 
Chonghang Zhao, Lin-Chieh Yu, Kim Kisslinger, Charles Clark, Cheng-Chu Chung, Ruipeng Li, 
Masafumi Fukuto, Ming Lu, Jianming Bai, Xiaoyang Liu, Hui Zhong, Mingzhao Liu, Sanjit Ghose, Yu-
chen Karen Chen-Wiegart, Kinetics and Evolution of Solid-State Metal Dealloying in Thin Films with 
Multimodal Analysis. Acta Materialia, 2022: p. 118433 
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3.2 Exploration of Parent Alloy Composition and Dealloying Time 

Grazing-Incidence Wide-Angle X-ray Scattering (GIWAXS) data was acquired at the Complex 

Materials Scattering (CMS, 11-BM) beamline, NSLS-II, as part of a systematic study of a thin film 

SSID system consisting of a Ti-Cu parent alloy film with a Mg solvent film deposited on top of 

the parent alloy. The acquired GIWAXS spectra were compared to reference peak locations using 

commercial phase identification software (Jade 9, Materials Data, Inc.) to determine the metallic 

and intermetallic phases present in the thin films at various stages of the dealloying process. 

Several processing parameters were varied including parent alloy composition, dealloying time, 

and dealloying temperature. Moreover, for GIWAXS analysis the incident angle of the X-ray beam 

can be varied, with a larger incident angle probing deeper regions of the thin film samples.  

In order to visualize the multiparameter space that characterizes the Ti-Cu/Mg system several 

waterfall plots were created using Matplotlib and other Python tools. Before any plotting a fitted 

quadratic background was subtracted from each GIWAXS pattern using the PeakUtils package in 

Python [26]. These plots show how the GIWAXS patterns evolves as single parameter is varied, 

allowing for specific aspects of the dealloying kinetics to be understood. For example, Figure 3.1 

shows a waterfall plot for varying Ti-Cu parent alloy compositions after dealloying at 460 °C for 

30 minutes with an incident angle of 0.3°, except for the 50-50 sample for which 15 minute 

dealloying time is shown due to the 30 minute sample breaking. In Figure 3.1 a selected portion 

of the GIWAXS patterns is shown to highlight the presence of peaks for CuMg2 and Cu2Mg phases 

indicated with green and blue arrows respectively. Previous analysis of this dealloying system had 

shown a phase transformation from CuMg2 to Cu2Mg during the course of the dealloying process 
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at 460°C [24]. From Figure 3.1 it can be seen that for initial concentrations of 10 and 20 at.% Ti 

(i.e., 90 and 80 at.% Cu) this transformation proceeded to completion since only Cu2Mg peaks are 

present, but for higher Ti concentrations and thus lower Cu concentrations the kinetics were slower 

so both CuMg2 and Cu2Mg peaks can be seen to some degree; with the exception of 90 at.% Ti for 

which neither Cu-Mg intermetallic phases can be seen.  

 

Figure 3.1 GIWAXS patterns of samples dealloyed at 460 °C for 30 minutes with varying Ti-Cu 
parent alloy composition shown in the q range between ~1.25 and 1.8 Å-1. Compositions varied 
from 10 at.% Ti (blue) to 90 at.% Ti (yellow) with 10 at.% increment. Note that for 50 at.% Ti 
(purple) a dealloying time of 15 minutes is shown due to the 30 minute sample breaking. Arrows 
show approximate locations of reference peaks for CuMg2 (green) and Cu2Mg (blue) phases. 
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Furthermore, the spectra acquired at varying dealloying times was analyzed in a similar way. For 

this experiment only two parent alloy compositions (Ti-Cu 10-90 and 30-70) were measured after 

dealloying at 460° C for both 7.5 and 30 minutes. The spectra acquired at an incident angle of 0.3° 

for the 30-70 samples are shown in Figure 3.2 to highlight peak shoulders in the 7.5 minute 

GIWAXS pattern at roughly 2.82 Å-1 and 2.98 Å-1. These shoulders may correspond to the 

presence of a TiCu intermetallic phase which was identified to have diffraction peaks at those 

approximate locations. This observation helped in addressing a concern that no TiCu intermetallic 

phases were previously identified in the spectra, since some TiCu intermetallics would likely form 

in the parent alloy before the Cu has been selectively removed. Since these shoulders are only 

present for the sample dealloyed for 7.5 minutes, but not for 30 minutes, it is possible this 

intermetallic phase formed early in the dealloying process and was later transformed as the Cu 

leached into the Mg film. While this is only initial evidence for such an intermetallic phase, further 

experiments could verify the presence of this phase by testing samples with even shorter dealloying 

times, or by comparing the spectra of the 30-70 sample dealloyed for 7.5 minutes after chemical 

etching of the Mg top layer.  
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Figure 3.2 Scattering patterns for 30-70 parent alloy composition acquired at 0.3° incident angle 
after dealloying at 460° C for 7.5 minutes (blue) and 30 minutes (orange). Red arrows indicate 
locations of peak shoulders on the 7.5 minute spectra which may correspond to TiCu intermetallic 
formed before dealloying completion. Other peaks shown were determined to correspond to the 
same CuMg2 and Cu2Mg phases identified in Figure 3.1.  

 

3.3 Multiparameter Data Visualization 

Exploring a multiparameter space, such as an SSID dealloying system, can be made more efficient 

by visualizing the variation of multiple parameters at the same time. In the case of GIWAXS data 

this was achieved by mapping the intensity of a particular phase as a function of two system 

parameters. For instance, in Figure 3.3 characteristic peaks for Ti, CuMg2, and Cu2Mg phases are 

mapped as a function of the parent alloy composition as well as the measured incident angle (theta) 

on samples dealloyed at 460 °C for 30min. Note for this analysis Ti-Cu 50-50 parent alloy 
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composition is excluded due to sample breaking. By varying theta, we can observe how the 

intensity of any particular phase changes at different depths into the thin film sample. For this 

analysis peak areas were calculated using an in-house Python script which utilizes SciPy’s signal 

module to determine which peak in each GIWAXS pattern is located closest to the known 

reference peak location. The script then integrates over this peak, using the full width half 

maximum (FWHM) to determine the bounds of integration as well as the integral baseline. For 

weak signals such as the Ti (110) phase peak this methodology was problematic since occasionally 

there would be no peak at the reference location, so a random nearby peak would be selected 

instead. To mitigate this issue, for the Ti phase a manual region of interest (ROI) was added to the 

script, and if the peak nearest to the reference location was outside the ROI the area would be 

automatically set to zero.  
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Figure 3.3 Quantification of phases by XRD peak intensity mapping for Ti (a), CuMg2 (b), and 
Cu2Mg (c) phases as a function of parent alloy composition and measurement incident angle 
(theta). Note that 50 at.% Ti parent alloy composition is excluded due to sample breaking.  
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Figure 3.3 shows that each selected phase has increasing intensity with increasing theta. This 

suggests that even at the greatest theta of 0.5° these measurements did not reach the critical angle 

at which the bottom parent alloy layer of the thin films is probed more than the top solvent layer. 

This is because beyond the critical angle we would expect to see a significant decrease in Cu-Mg 

intermetallic phase signals along with increased Ti signal. Moreover Figure 3.3 allows us to see 

the CuMg2 and Cu2Mg phases propagate a similar amount into the solvent top layer after 

dealloying, and the phase transition from CuMg2 to Cu2Mg at greater parent alloy Cu at.% can 

again be seen in comparing Figure 3.3(b) to Figure 3.3(c). At first inspection the results for the Ti 

phase mapping in Figure 3.3(a) may seem strange, since the most intense region of the map by far 

is at the lowest Ti at. %. However, taking a closer look at the Ti (110) peak in the actual scattering 

patterns reveals that this peak is often overshadowed by the much more prominent nearby CuMg2 

(080) peak, except for the Ti-Cu 10-90 sample since at this composition there is no CuMg2 signal 

due to the phase transition into Cu2Mg. This effect can be seen at theta of 0.3° in Figure 3.4. Figure 

3.4 also highlights that in general the Ti phase signal was much weaker than that of other phases 

such as the Cu-Mg intermetallics, possibly due to critical angle not being reach during 

experimental measurement. Overall, this example demonstrates the importance of using multiple 

techniques to visualize multiparameter datasets especially when considering anomalous results 

from a particular visualization technique.  
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Figure 3.4 Plot of selected portion of GIWAXS patterns to highlight relative weakness of Ti (110) 
peak signal, indicated with bottom red arrow, and overshadowing by nearby CuMg2 (080) peak 
signal, indicated with top green arrow. Patterns are shown for varying parent alloy compositions 
10 at.% Ti to 90 at.% Ti with 10 at.% increment. Note 50 at.% Ti is excluded due to sample 
breaking.  

 

3.4 Future Analysis 

Altogether this analysis demonstrates some of the multiparameter data visualization capabilities 

of standard Python data science packages such as Matplotlib and SciPy, as well as the benefit of 

incorporating more specialized packages such as PeakUtils. By developing programmatic data 

visualization tools using these packages, future analysis can be faster and more streamlined. For 

example, future analysis could apply the same parameterization and visualization techniques to a 

GIWAXS dataset on dealloyed samples after chemical etching to gain more information about the 
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Ti phase evolution. Likewise, using the same analysis tools the effect of varying processing 

parameters such as dealloying time and temperature can be further explored. 
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Chapter 4. Conclusion 

 

Altogether this work showed the implementation of a range of data science techniques to three 

separate studies of functional materials using synchrotron X-ray data analysis. In the first case, the 

tools of linear algebra were applied to XAS analysis by first understanding how an XAS dataset 

can be thought of in terms of vectors and matrices. Then using the specialized pyMCR package an 

MCR-ALS algorithm was applied for spectral decomposition. This analysis also relied on the 

XView package developed at the ISS beamline of NSLS-II. This highlights the importance of each 

level of software development for advanced data analysis. For instance, the pyMCR package 

handled the mathematics of spectral decomposition, the GUI of XView was critical in streamlining 

the user interface so that many different initial guesses for the pure components could be tested.  

 

In the second example, a combination of open-source packages such as scikit-image and OpenCV 

were used in conjunction with Avizo commercial software for 3D nanotomography analysis. 

Moreover, the analysis of in-situ X-ray nanotomography data shows the need to think 

multidimensionally for synchrotron science, in this case dealing with both spatial and time-

resolved data. Likewise, the final chapter also showed the need to think multidimensionally, but 

for the purposes of exploring multiparameter spaces such as the various processing parameters that 

characterize thin film SSID.   

 

Many in the synchrotron community have already recognized the crucial role of data acquisition, 

management, analysis, and visualization for the future of synchrotron science [27]. This can be 

seen in the development of robust data pipelines and tools such as Brookhaven National 

Laboratory’s Bluesky framework, which facilitates the use of scientific Python packages 
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throughout the experimental process, or in the development of open-source software such as the 

Tomviz package by Kitware Inc., which provides streamlined tools for tomography data analysis 

and visualization [1, 28].  However, this work has shown the amount opportunity available on the 

user-side to develop custom pipelines that streamline or automate specific tasks for each project. 

As the field of synchrotron research continues to advance, the role of data science in extracting 

valuable insights from experimental data is becoming increasingly important. User-created 

pipelines at synchrotron facilities will continue to rely on a diverse range of software packages, 

both commercial and open-source. However, the key to unlocking the full potential of synchrotron 

data lies in mastering the data science tools and techniques necessary to process and visualize 

complex, multidimensional data. As we move into the future, the trend towards greater integration 

of data science into synchrotron research is only set to continue. With the ability to efficiently 

analyze and interpret vast amounts of data, scientists will be able to uncover new insights and push 

the boundaries of what is possible in synchrotron research. 
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